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Abstract. It is shown that gravitational fields invariant for a non Abelian 2-dimensional Lie algebra of
Killing fields are parameterized either by solutions of a transcendental equation (the tortoise equation) or by
solutions of a linear second order partial differential equation (the Laplace equation or the Darboux equation)
on the plane. Those determined via Laplace or Darboux equations are exact nonlinear gravitational waves
obeying to two nonlinear superposition laws.

PACS. 04.20.-q Classical general relativity – 04.20.Gz Spacetime topology, causal structure, spinor
structure – 04.20.Jb Exact solutions

1 Introduction

In the last years, together with the experimental efforts
devoted to the detection of gravitational waves, there is a
strongly related theoretical activity to describe and pre-
dict the emission of gravitational waves from astrophysical
systems in strong field conditions. However, all the ex-
perimental devices, laser interferometers (e.g. GEO-600,
VIRGO, LIGO), or resonant antennas, are constructed
coherently with results obtained from the non covariant
linearized Einstein field equations, in close analogy with
that is normally done in Maxwell theory of electromag-
netic fields. Thus, a great deal of interest is still devoted
to explicit solutions which more easily enable to discrimi-
nate between a physical or pathological feature.

Moreover, starting from the seventy’s, new powerful
mathematical methods have been invented to deal with
nonlinear evolution equations and their exact solutions
(see [9] and references therein).

In 1978, Belinskii and Zakharov considered a metric of
the form

g = f (z, t)
(
dt2 − dz2

)
+ h11 (z, t) dx2

+ h22 (z, t) dy2 + 2h12 (z, t) dxdy.

The corresponding Einstein equations reduce essen-
tially1 to (

αH−1Hξ

)
η

+
(
αH−1Hη

)
ξ

= 0,

where H ≡ ‖hab‖ and

√
2ξ = (t + z) ,

√
2η = (t − z) , α =

√
|detH|.

a e-mail: vilasi@sa.infn.it
1 The function f can be obtained by quadratures in terms of

the matrix H.

A suitable generalization of the Inverse Scattering
Transform, allows to solve the above equation and then
to obtain solitary waves solutions [1], as for instance

−ds2 =
C2

1z2q2
cosh (qr + C2)

[t2 − z2]1/2

(
dt2 − dz2

)
+

cosh (s1r+C2)
cosh (qr + C2)

t2s1dx2+
cosh (s2r−C2)
cosh (qr+C2)

z2s2dy2

− 2 sinh (r/2)
cosh (qr + C2)

zdxdy,

with t2 ≥ z2 and where s1 and s2 are constants satisfying
the condition s1+ s2 = 1, so that they can be expressed,
in terms of one arbitrary constant parameter q, as s1 =
1/2 + q, s2 = 1/2 − q. The function r is defined by:

exp r = 2z−2t2 − 1 − 2
[
z−2t2

(
z−2t2 − 1

)]1/2
.

It can be easily verified that for any t the extremum
of g11 with respect to the spacelike coordinate z, will cor-
respond to the same constant value r0 of the function r.
Then, the world line of the extremum has the equation
t = z cosh (r0/2), and therefore the speed of this localized
disturbance is smaller than the light velocity.

A geometric inspection of the above metric shows that
it is invariant under translations along x, y-axis, i.e. it
has the vector fields ∂

∂x and ∂
∂y as Killing fields which,

since
[

∂
∂x , ∂

∂y

]
= 0, close a Abelian 2-dimensional Lie al-

gebra2 A2. Moreover, the distribution D, generated by ∂
∂x

2 The study of Einstein metrics invariant for a Abelian
2-dimensional Killing Lie algebra goes back to Einstein and
Rosen [3,6], Kompaneyets [5].
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and ∂
∂y , is 2-dimensional and the distribution D⊥ orthog-

onal to D, is integrable3 and transversal to D.
Thus, it is natural to consider the general problem of

characterizing all gravitational fields g admitting a Lie
algebra G of Killing fields such that:

I. the distribution D, generated by the vector fields of G,
is 2-dimensional;

II. the distribution D⊥ orthogonal to D, is integrable and
transversal to D.

A 2-dimensional G, is either Abelian (A2) or non-
Abelian (G2). A metric g satisfying I and II, with G =
A2, or G2 will be called G-integrable.

In the following, Kil (g) will denote the Lie algebra of
all Killing fields of a metric g while Killing algebra will
denote a sub-algebra of Kil (g).

2 Invariant metrics

2.1 Semi-adapted coordinates

Let g be a metric on the space-time M and G2 one of its
Killing algebras whose generators X, Y satisfy

[X, Y ] = sY, s = 0, 1. (1)

The Frobenius distribution D generated by G2 is 2 -dimen-
sional and a chart (x1, x2, x3, x4) exists such that

X =
∂

∂x3
, Y =

(
exp sx3

) ∂

∂x4
· (2)

Such a chart will be called semiadapted (to Killing fields).

2.2 Invariant metrics

It can be easily verified [8] that in a semiadapted chart g
has the form

g = gijdxidxj + 2
(
li + smix

4
)
dxidx3 − 2midxidx4

+
(
s2λ

(
x4
)2 − 2sµx4 + ν

)
dx3dx3

+2
(
µ − sλx4

)
dx3dx4 + λdx4dx4, i, j = 1, 2;

with gij , mi, li, λ, µ, ν arbitrary functions of
(
x1, x2

)
.

2.3 Killing leaves

Condition II allows to construct semi-adapted charts, with
new coordinates

(
x, y, x3, x4

)
, such that the fields e1 = ∂

∂x ,
e2 = ∂

∂y , belong to D⊥. In such a chart, called from now
on adapted, the components li’s and mi’s vanish.

We will call Killing leaf an integral (bidimensional)
submanifold of D and orthogonal leaf an integral (bidi-
mensional) submanifold of D⊥. Since D⊥ is transver-
sal to D, the restriction of g to any Killing leaf, S, is

3 The integrability of the orthogonal distribution follows
from the Abelian character of the Killing Lie algebra.

non-degenerate. Thus, (S, g|S) is a homogeneous bidi-
mensional Riemannian manifold. Then, the Gauss curva-
ture K (S) of the Killing leaves is constant (depending on
the leave). In the chart (p = x3

∣∣
S
, q = x4

∣∣
S
) one has

g|S =
(
s2λ̃q2 − 2sµ̃q + ν̃

)
dp2+2

(
µ̃−sλ̃q

)
dpdq + λ̃dq2,

where λ̃, µ̃, ν̃, being the restrictions to S of λ, µ, ν, are
constants, and

K (S) = λ̃s2
(
µ̃2 − λ̃ν̃

)−1

. (3)

This shows that the following cases can occur for (S, g|S).

1. λ̃ > 0, λ̃ν̃ − µ̃2 < 0: (S, g|S) is a non-Euclidean plane,
i.e. a bidimensional Riemannian manifold of negative
constant Gauss curvature.

2. λ̃ < 0, λ̃ν̃−µ̃2 > 0: (S, g|S) is an “anti” non-Euclidean
plane, i.e. is endowed with the metric of the previous
case multiplied by −1.

3. λ̃ν̃ − µ̃2 < 0: (S, g|S) is any indefinite bidimensional
metric of constant Gauss curvature.

Since the Killing leaves are parametrized by x, y, the func-
tion

K = K (x, y) = λs2
(
µ2 − λν

)−1

describes the behavior of the Gauss curvature when pass-
ing from one Killing leave to another.

It is worth to note that the Killing algebra G2 is a sub-
algebra of the algebra Kil (g0), g0 being a bidimensional
metric of constant curvature (for instance, g0 = g|S).

If g0 is positive (respectively, negative) definite and
of positive (respectively, negative) Gauss curvature, then
Kil (g0) is isomorphic to so (3). But so (3) does not ad-
mit bidimensional subalgebras at all. This explains why
g|S cannot be a positively (respectively, negative) curved
metric in the case (1) (respectively, (2)).

Similarly, if g0 is a positive or negative definite flat
metric, then Kil (g0) admits only Abelian bidimensional
subalgebras. This explains why both positive and negative
definite flat metrics are absent in the above list for g|S .

In all other cases, the algebra Kil (g0) admits bidimen-
sional non-Abelian subalgebras.

More exactly, if g0 is not flat, then Kil(g0) is isomor-
phic to so (2, 1). Let g be the Killing form of so (2, 1).
Then, the tangent planes to the isotropic cone of g ex-
haust the bidimensional non-Abelian Lie subalgebras of
so (2, 1). If g0 is flat and, thus, indefinite, then any bidi-
mensional subspace of the algebra Kil (g0) different from
its commutator, which is Abelian, is a non-Abelian subal-
gebra.

It is not difficult to describe the algebra Kil (g|S) in
the semi-adapted coordinates (p, q). A direct computation
shows that Kil(g0) has the following basis:

X̃ = ∂p, Ỹ = esp∂q,
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Z̃ = e−sp
[
2
(
sλ̃q − µ̃

)
∂p +

(
s2λ̃q2 − 2sµ̃q + ν̃

)
∂q

]
,

[
X̃, Ỹ

]
= sỸ ,

[
X̃, Z̃

]
= −sZ̃,

[
Ỹ , Z̃

]
= 2sλ̃X̃.

In the case λ = 0, the metric g|S is flat indefi-
nite and it is convenient to identify (S, g|S) with the
standard plane

(
R2, dξ2 − dη2

)
, R2 = {(ξ, η)}. To do

that it is necessary to choose a bidimensional non-
commutative subalgebra in Kil

(
dξ2 − dη2

)
(they are

all equivalent). For instance, by choosing Y0 = ∂ξ +
∂η, X0 = −η∂ξ − ξ∂η, we have [X0, Y0] = Y0,
X0, Y0 ∈ Kil

(
dξ2 − dη2

)
and, for s �= 0, one can iden-

tify the quadruple
(
S, 2

(
dpdq − qdp2

)
, X |S , Y |S

)
with(

R2, dξ2 − dη2, X0, Y0

)
.

The simply connected Lie group G corresponding to G
is isomorphic to the group of affine transformations of R2.
Then, both S and R2 are diffeomorphic to G as homoge-
neous G−spaces and the above identification of them is
an equivalence of G−spaces.

The Killing form of G determines naturally a symmet-
ric covariant tensor field on the G−space G which is iden-
tified with dx̃2 on S and with (ξ − η)−2 (dξ − dη)2 on R2.
We will continue to call it Killing form. Thus, in the above
identification the metric g|S for λ = 0 and s = 0 corre-
sponds to

µ̃
(
dξ2 − dη2

)
+ ν̃ (ξ − η)−2 (dξ − dη)2 . (4)

This representation of the metric g|S has been used to
describe global solutions of the Einstein equations in [8].

3 The Ricci tensor field

In this section the notation x1 = x, x2 = y, x3 = p, x4 =
q, will be used; moreover, Greek letters indices take values
from 1 to 4; the first Latin letters indices take values from 3
to 4, while i, j from 1 to 2.

Let g be a G2-integrable metric, such that the matrix
MΘ (g) associated to g is of the form

MΘ (g) = diag (F,H) (5)

where F and H are 2 × 2 matrices whose elements de-
pend only on x1 and x2. It is suitable to distinguish two
cases according to whether F, i.e., the matrix associated
to the metric restricted to D⊥, has negative or positive
determinant.

If detF < 0, then the components of the Ricci tensor
in a non-holonomic adapted basis are

(Rab) =
H

2fα

[
(αA,1),2 + (αA,2),1

]
+

s2

α2
Hh22,

R12 = ∂1∂2 ln α |f | + 1
4
tr [A,1A,2] ,

Rii =
1
4
tr [A,iA,i] − αifi

αf
+

αii

α
− α2i

α2

R13 = s
[
(A,1)

2
2 − (A,1)

1
1

]
, R23 = −2s (A,1)

1
2

R14 = s
[
(A,2)

2
2 − (A,2)

1
1

]
, R24 = −2s (A,2)

1
2 .

If detF > 0, then the components of the Ricci tensor
in a non-holonomic adapted basis are

R13 = s
[
(A,1)

2
2 − (A,1)

1
1

]
;

R23 = s
[
(A,2)

2
2 − (A,2)

1
1

]
R14 = −2s (A,1)

1
2 , R24 = −2s (A,2)

1
2

(Rab) =
H

4fα

[
(αA,1),1 + (αA,2),2

]
+

s2

α2
Hh22

R11 =
1
2
∆ (ln α ln |f |) +

1
4
tr (A,1)

2

+
α,2 f,2

2αf
− α,1 f,1

2αf
+
(α,1

2α

)
,1
−
(α,2

2α

)
,2

;

R22 =
1
2
∆ (ln α ln |f |) +

1
4
tr (A,2)

2

+
α,1 f,1

2αf
− α,2 f,2

2αf
+
(α,1

2α

)
,1
−
(α,2

2α

)
,2

R12 = ∂1∂2 (ln α) +
1
4
tr [A,1A,2]

−α,1 f,2

2αf
− α,2 f,1

2αf

where A,i = H−1H,i, α =
√|detH|, ∆ = ∂2

1 + ∂2
2 is the

Laplace operator and α =
√|detH|.

4 Einstein metrics

4.1 Einstein metrics when g(Y, Y) �= 0

In the considered class of metrics, vacuum Einstein equa-
tions, Rµν = 0, can be completely solved [8]. If the Killing
field Y is not of light type, i.e. g(Y, Y ) �= 0, then in the
adapted coordinates (x, y, p, q) the general solution is

g = f(dx2 ± dy2) + β2[(s2k2q2 − 2slq + m)dp2

+2(l − skq)dpdq + kdq2] (6)

where f = − 1
2s2k �± β2, and β (x, y) is a solution of the

tortoise equation

β + A ln |β − A| = u (x, y) ,

the function u being a solution either of Laplace or
d’Alembert equation, �±u = 0, �± = ∂2

xx ± ∂2
yy, such

that (∂xu)2 ± (∂yu)2 �= 0. The constants k, l, m are con-
strained by km − l2 = ±1, k �= 0.

4.1.1 Normal form of metrics when g(Y, Y) �= 0

The metrics (6) are all locally diffeomorphic to

g = ε1

([
1 − A

r

]
dτ2 ±

[
1 − A

r

]−1

dr2

)
+ε2r

2
[
dϑ2 + F (ϑ) dϕ2

]
(7)
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where ε1 = ±1, ε2 = ±1 with a choice coherent with
the required signature 2, (ϑ, ϕ) are geographic coordinates
along Killing leaves, F (ϑ) is equal either to sinh2 ϑ or
− cosh2 ϑ, depending on the signature of the metric, r =
2s2kβ, and τ = v is the harmonic function conjugate to u.

The above form is described in the context of warped
solutions in [4]. The geometric reason for this form is that,
when g(Y, Y ) �= 0, a third Killing field exists which to-
gether with X and Y constitute a basis of so(2, 1). The
larger symmetry implies that the geodesic equations de-
scribe a non-commutatively integrable system [7], and the
corresponding geodesic flow projects on the geodesic flow
of the metric restricted to the Killing leaves. The above lo-
cal form does not allow, however, to treat properly the sin-
gularities appearing inevitably in global solutions. More-
over, the metrics (6) play a relevant role in the construc-
tion of new global solutions as described in [8].

In analogy with what is done for the Schwarzschild
solution, a distribution of matter giving rise to the static
gravitational field

g = −f(r)dτ2 + h(r)dr2 + r2(dθ2 + sinh2 θdϕ2) (8)

which reduces in the vacuum to the metric (7) may be also
introduced [11].

4.2 Einstein metrics when g(Y, Y) = 0

If the Killing field Y is of light type, then the general
solution of vacuum Einstein equations, in the adapted co-
ordinates (x, y, p, q), is given by

g = 2f(dx2 + dy2) + µ[(w (x, y) − 2sq)dp2 + 2dpdq],
(9)

where µ = DΦ + B; D, B ∈ R, Φ is a non constant har-
monic function, f = ± (∇Φ)2 /

√|µ|, and w (x, y) is a so-
lution of the Darboux equation:

∆w + (∂x ln |µ|) ∂xw + (∂y ln |µ|) ∂yw = 0.

The physical properties of the above gravitational wave
will be described in a forthcoming paper [2].

The new solutions (9) together with (6) exhaust all
local Lorentzian Ricci-flat metrics invariant for a G2 Lie
algebra.

5 Global solutions

Any of previous metrics is fixed by a solution of the wave
or Laplace equation, and a choice

– of the constant A and one of the branches of a solution
of the tortoise equation, if g(X, Y ) �= 0;

– of a solution of Darboux equation, if g(X, Y ) = 0.

The metric manifold (M, g) has a bundle structure whose
fibers are the Killing leaves and whose base W is a
bidimensional manifold diffeomorphic to the orthogonal

leaves. The wave and Laplace equations mentioned above
are defined on W . Thus, the problem of the extension
of our local solutions is reduced to that of the extension
of W . Such an extension carries a geometric structure[8],
the j-complex structure, that gives an intrinsic sense to
the notion of the wave and Laplace equations and clarifies
what variety of different geometries is, in fact, obtained.

Thus, any global metric is associated with a pair con-
sisting of a j-complex curve W and a j-harmonic func-
tion u on it.

It will be now described in detail how to construct
global solutions in the case in which Kil (gΣ) is so (3) or
so (2, 1). The remaining cases can be found in [8].

Denote by (Σ, gΣ) a homogeneous bidimensional
Riemannian manifold, whose Gauss curvature K (gΣ), if
different from zero, is normalized to ±1. Let (W , u) be a
pair consisting of a j-complex curve W and a j-harmonic
function u on W . The bundle structure π1 : M → W
canonically splits in the product W × Σ. Denote by π2 :
M → Σ the also natural projection of M = W ×Σ on Σ.
Then, the above data determine the following Ricci-flat
manifold (M, g) with

g = π∗
1

(
g[u]

)
+ π∗

1

(
β2
)
π∗

2 (gΣ) (10)

where β (u) is implicitly determined by the tortoise equa-
tion, and

g[u] = ±β−1(β − A)
(
du2 − j2dv2

)
.

6 Examples

Physically interesting examples and a procedure to con-
struct new global solutions starting from local known ones,
can be found in [8].
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